Polynomial-based non-uniform interpolatory subdivision with features control
نویسندگان
چکیده
منابع مشابه
Polynomial-based non-uniform interpolatory subdivision with features control
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform r...
متن کاملNon-uniform interpolatory subdivision via splines
We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.
متن کاملInterpolatory Subdivision Curves with Local Shape Control
In this paper we present a novel subdivision scheme that can produce a nice-looking interpolation of the control points of the initial polyline, giving the possibility of adjusting the local shape of the limit curve by choosing a set of tension parameters associated with the polyline edges. If compared with the other existing methods, the proposed model is the only one that allows to exactly re...
متن کاملNon-uniform Interpolatory Subdivision Based on Local Interpolants of Minimal Degree
This paper presents new univariate linear non-uniform interpolatory subdivision constructions that yield high smoothness, C and C, and are based on least-degree spline interpolants. This approach is motivated by evidence, partly presented here, that constructions based on high-degree local interpolants fail to yield satisfactory shape, especially for sparse, non-uniform samples. While this impr...
متن کاملPolynomial generation and quasi-interpolation in stationary non-uniform subdivision
We study the necessary and sufficient conditions for the generation of polynomials by stationary subdivision schemes, and we show how to derive appropriate quasiinterpolation rules that have the optimal approximation order. We show that these conditions hold in the context of non-uniform subdivision as well, and we demonstrate how they can be used for the construction of stationary non-uniform ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.09.014